Topology Proceedings 1 (1976) pp. 209-219: SOME PROPERTIES OF WHITNEY CONTINUA IN THE HYPERSPACE C(X)
نویسنده
چکیده
منابع مشابه
A note on a Whitney map for continua
Let X be a non-metric continuum, and C(X) the hyperspace of subcontinua of X. It is known that there is no Whitney map on the hyperspace 2 for non-metrizable Hausdorff compact spaces X. On the other hand, there exist non-metrizable continua which admit and the ones which do not admit a Whitney map for C(X). In this paper we investigate the properties of non-metrizable continua which admit a Whi...
متن کاملWhitney Maps - a Non - Metric Case
It is shown that there is no Whitney map on the hyperspace 2x for nonmetrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X). Given a Hausdorff compact space X, we consider the space 2x of all non-empty compact subsets of X equipped with the Vietoris topology. Any subspace H (X) of the space 2x is ...
متن کاملOn some properties of the hyperspace $theta (X)$ and the study of the space $downarrowtheta C(X)$
The aim of the paper is to first investigate some properties of the hyperspace $theta(X)$, and then in the next article it deals with some detailed study of a special type of subspace $downarrowtheta C(X)$ of the space $theta (Xtimes mathbb I)$.
متن کاملA characterization of dendroids by the n-connectedness of the Whitney levels
Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0). Introduction. Throughout this paper X will denote a continuum (i.e., a compact conne...
متن کاملWhitney blocks in the hyperspace of a finite graph
Let X be a finite graph. Let C(X) be the hyperspace of all nonempty subcontinua of X and let μ : C(X) → R be a Whitney map. We prove that there exist numbers 0 < T0 < T1 < T2 < · · · < TM = μ(X) such that if T ∈ (Ti−1, Ti), then the Whitney block μ(Ti−1, Ti) is homeomorphic to the product μ(T )× (Ti−1, Ti). We also show that there exists only a finite number of topologically different Whitney l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007